AD-A228 507

An Event-Driven Model-View-Controller
Framework for Smalltalk

TR89-025
June, 1989

NOOOIU -8b-K -0657)

I
=
(em)
<
O
~3
—
e
o

Yen-Ping Shan

I" DISTAIBUTICN STATEMENT K
{

Appioves o1 pubiic teleasef
Diesiouzzs Uniimired

-— -

The University of North Carolina at Chapel Hill
Department of Computer Science

CB#3175, Sitterson Hall

Chapel Hill, NC 27599-3175

A TextLab Report

Portions of this research were supported by the National Science Foundation, Grant
#IRI-85-19517 and the Army Research Institute, Contract #MDA903-86-C-0345.
UNC is an Equal Opportunity/Aflirmative Action Institution.

An Event-Driven Model-View-Controller
Framework for Smalltalk

Yen-Ping Shan

Juue 19, 1989

} Abstract
The Smalltalk Model-View-Controller (MVC) user interface paradigm
uses polling for its input control. The polling loops consume CPU
cycles even when the user is not interacting with the interface. Ap-
plications using Smalltalk as their front-end often suffer unnecessary
performance loss. This paper presents a prototype event-driven MVC
framework to solve these problems. A solution to the compatibility
problem is also provided to-allow interface objects built under both
polling and event-driven mechanisms to be used by each other with no
modification and no performance penalty. (Loy

S S
i

1 Introduction

The Model-View-Controller paradigm [Adams 88, Krasner 88] provides the
framework for most Smalltalk-80 [Goldberg 83] user interfaces. Within this
framework, the user interface objects interact with the end user by polling
the states of the input devices and responding to the state changes.

Polling is a source of unnecessary performance loss. The polling loops
must always be active in order not to miss any action performed by the
user. When one is developing systems with multiple processes, this becomes
a serious problem. For example, an application with a polling user interface
may fork an agent process to handle the transactions to a remote database
and to manage the local cache. Since the user interface process must keep
polling even when the user is not interacting with the system (for example,

the user is waiting for a transaction to finish), it consumes the CPU cy-
cles that should have been spent on the database agent process. Moreover,
the existence of the database agent process makes the interface less respon-
sive. The situation is aggravated when the database is running on the same
machine as the user interface.

This deterioration of performance can be avoided if the user interface is
built on top of an event-driven mechanism that does not poll!. However, one
must be cautious in making such a fundamental change. While switching
to an event-driven mechanism is beneficial, throwing away all of the exist-
ing user interfaces and rebuilding them under a new mechanism for better
performance is too high a cost. Reusability is among the most important
features of object-oriented programming. If the new event-driven mecha-
nism does not allow us to reuse the work done with the polling mechanism,
it would be much less useful.

This paper presents a prototype event-driven interface framework that
not only solves the performance problem but also allows:

o interfaces built with the polling mechanism to co-exist with ones that
are built with the event-driven mechanism. (For example, an event-
driven directory browser could co-exist with the standard Smalltalk
system browsers.)

o interface objects built with both mechanisms to be reused by each
other. (For example, within a polling environment one could use an
event-driven spread-sheet which in turn uses a polling menu.)

Additionally, no modification to existing code is required and there is no
performance penalty.

The next section gives a brief overview of both the polling and event-
driven mechanisms. In section 3, further motivation for having an event-
driven mechanism is provided. Section 4 describes the design and implemen-
tation of the prototype event-driven MVC framework. Section 5 discusses
the solution to the compatibility problem. The last section gives the status
of the implementation.

! An alternative is to implement a Time-Sharing Citizenry [Schiffman 88] mechanism
within the Smalltalk itself.

2 Background

Polling

A system that supports the polling mechanism often maintains a globally
accessible table of the states of the devices. In Smalltalk, this table is an
instance of InputSensor and is accessible through a global variable called
Sensor. A typical interface object will have loops that poll the relevant
table entries. When a state change is sensed, the case statement in the loop
invokes a routine to process the change. This routine can change the state
of the underlying application, give feedback to the user, or transfer control
to another loop to detect further state changes. For example, a Smalltalk
PopUpMenu is often invoked by a loop that senses mouse button presses.
Control is then passed to the PopUpMenu polling loop which tracks the
cursor position and highlights the proper portion of the menu when the user
drags the cursor.

The control structure of a polling interface is characterized by a tree
of loops. Each loop in the tree keeps control while certain conditions are
satisfied (for instance, the cursor stays within a rectangle area), and polls
the children loops to see whether they want control. A child loop that
wants control can grab it, and later return control to its parent loop when
its looping condition is no longer satisfied.

Event-Driven

An event-driven mechanism [Newman 79] usually consists of three major
components: a set of event generators, an event queue that buffers the
events in sequence, and an event dispatching mechanism that removes the
events one at a time from the queue and sends them to the corresponding
event handlers. An event has a name or number that identifies the nature
of the interaction plus several data values that characterize the interaction.

A typical event-driven interface has a single event-fetching loop. The
execution of the loop is suspended when the event-fetching statement in the
loop tries to fetch from an empty event queue and resumes when new events
arrive.

An event-driven interface program registers a number of event handlers
with the event dispatching mechanism. For each handler, a list of interested
event types is specified. When an interesting event happens, the dispatching
mechanism activates the corresponding handler to process it.

3

Dist. "A" per telecon Dr. Ralph Wachter. |
ONR/code 1133. l

VHG 11/06/90

3 Why Event-Driven?

Besides the benefits in performance mentioned above, the event-driven mech-
anism provides a better trace of input devices. With the polling mechanism,
when a system is heavily loaded, it can miss a state change (for example,
a button click) because the polling loop is not at the condition statement
when the change happened. This does not happen with event-driven model
where all the events are buffered. An application has the freedom to discard
events when it cannot process them as fast as they come (this is seildom the
case, though); it can also control when the events should be discarded and
which one to discard. This is in contrast to the polling mechanism where
state changes are ignored, depending on the system load and the execution
timing of the statements in the polling loop.

The event-driven mechanism also makes possible implementation of cer-
tain applications that could not be done within a polling paradigm. For
instance, with the prototype event-driven mechanism described in the next
section, the author was able to develop a package that allows users running
Smalltalk on different machines to share visual workspaces. The package is
general in that a user can select any event-driven application and then share
both control and the visual display with other users.

4 A Prototype Event-Driven MVC

This section describes the three major components—the event generator, the
event queue, and the event dispatching mechanism—for a prototype event-
driven framewor: which preserves the structure and the semantics of the
MVC paradigm.

4.1 Event Generator

An event generator is responsible for generating events and placing them on
the event queue. Beneath the Smalltalk virtual machine, the input devices
are handled by an event-driven (more precisely interrupt-driven) mecha-
nism; consequently, the problem of creating an event generator is reduced
to identifying the place where Smalltalk changes its state table and inserting
code to generate the events. Smalltalk acquires the primitive input events

4

from the virtual machine through the method “primitiveInputWord” and
updates its state table in the InputState class. The code inserted in the
“run” method of the InputState class interprets the primitive input events
to construct the events used by the framework. Methods are also added to
the InputState to control event generation.

4.2 Event Queue

The implementation of the event queue is straightforward. The Smalltalk
SharedQueue provides most of the functionality needed by the event queue,
including suspending processes that try to fetch from an empty queus. The
EventQueue, a subclass of SharedQueue, implements methods to control the
queue and to handle queue overflow.

4.3 Event Dispatching and the MVC

The event dispatching mechanism is more subtle and the decisions made
here affect compatibility. The goal is not just to produce a mechanism that
delivers the events to the right event handlers, but also to ensure that the
created event-driven interfaces are compatible with polling interfaces.

The “superView-subView” relation in the Smalltalk View class provides
the base for event dispatching. A View in a structured picture can contain
other Views as sub-components. These sub-components are called “sub-
Views.” A View can be a subView of only one View-its “superView.” The
set of Views in a structured picture forms a hierarchy. In the prototype,
all screen objects inherit from a subclass of View called Mode. When a
Mode receives an event, it checks to make sure the event is intended for it
(usually by comparing the coordinates of the event with its display box)
and asks all of its “subModes,” starting from the topmost one, to process
the event. (The “subModes” are stored in the instance variable “subViews”
inherited from View.) If none of the subModes are interested in the event,
it then tries to process the event itself. If it is not interested in the event,
it returns the event as un-processed to its “superMode” (stored in the in-
stance variable “superView,” also inherited from View). A Mode delegates
responsibility for processing events to its event handler, which is stored in
the instance variable “controller,” defined by the MVC paradigm. In the
prototype, the Mode defines a number of new methods to provide better

clipping and windowing behavior.

The one Mode in the hierarchy that has no superMode is called the “root-
Mode.” It is an instance of RootMode class where the event-fetching loop is
defined. A typical application would have a single RootMode and a hierar-
chy of Modes. To allow multiple active applications, a built-in mechanism
is provided in RootMode to guarantee that no two RootModes will attempt
to access the event queue at the same time.

The above arrangement creates an event-driven framework which pre-
serves the structure of the MVC paradigm. It allows the Smalltalk “MVC
inspector” to be used without any modification. The event-driven frame-
work also preserves the semantics of the MVC paradigm. The View is still
responsible for visual aspects of the structured picture, and the Controller
(now an event handler) is still in charge of the user interaction. Since both
the structure and semantics of the MVC paradigm are preserved by the
event-driven framework, we term it “event-driven MVC.”

5 Compatibility

The problem of compatibility comes from having two active mechanisms
(event-driven and polling) present at the same time. This can be viewed
as a control switching problem. At any time, one would like to make sure
that the mechanism in control corresponds to the type of object that the
user is interacting with, and that there is no interference from the other
mechanism. Knowing when and how to switch between the two mechanisms
is the key to achieving compatibility.

5.1 Definition of the Problem

Strings of capital letters are used to present the problems concisely. The
string XY denotes that an object built with mechanism Y is running in
an environment built with mechanism X. Each letter can either be P, de-
noting the polling mechanism, or E, denoting the event-driven mechanism.
For example, the string PE represents the situation of an event-driven ob-
ject running under an environment that is controlled by a polling object.
The string PEP would describe a polling interface object running under an

event-driven environment which in turn is running under another polling
environment. The spread-sheet example used in the Introduction section is
modeled by this string. A string of PPEPEEPE represents a highly nested
interface with event-driven and polling objects inter-mixed.

Although the compatibility problem may look complicated at the first
glance, it is regular. Notice that if the sub-problems PP, EE, PE, and EP can
be solved, all of the more complicated problems are merely concatenations
of these four basic cases. Since the first two sub-problems are trivial, only
the last two need further consideration.

5.2 When to Switch

For reasons of performance and preventing interference, one must avoid hav-
ing two mechanisms running at the same time whenever possible. This
precludes the use of a single mechanism as the master mechanism which
determines when to switch to a slave mechanism. The only choice left is
to have the X, the environment mechanism, in each XY pair, determine the
switches. o

5.3 Sandwiching

A technique, called “Sandwiching,” which inserts an invisible layer between
a pair XY is used to provide solutions to both the EP and PE cases. After
the invisible layer (named “ham”) is included in the representation, the
structure becomes XHY. Figure 1 shows an EHP sandwich. The purpose of
the “ham” is to make X feel like Y is built with the same mechanism as it
is and vice versa. If the “ham” is well designed, no modification to either
X or Y is necessary in order to have them running together. Therefore, the
problem of how to switch is addressed by the design of the “ham.”

5.4 How to Switch: Case EHP

The “ham” for this case is a Mode with a special event handler (controller)
which suspends event generation and flushes the event queue when certain
conditions (for example, an “EnterWindow” event is received) indicate that

- WA RRARARARATFAATATAIAIA
IVI‘I‘IL‘[‘Il’l!l!ll}[’l’lL

An event-driven environment

Figure 1: An EHP sandwich.

the polling application P should be in action. The “ham” then brings itself,
and therefore the P, to the front of the display (so that nobody obscures
them) and passes the control to the controller of the top view of P. When
control is returned, it resumes event generation.

The choice of making Mode a subclass of View shows another benefit
besides reusing code. It makes the “ham” easy to use. Since the “ham”
inherits the behavior of View, P can treat it as an ordinary polling View,
and E can treat it as an event-driven Mode. To construct the sandwich, one
simply creates a “ham,” attaches to it the polling application as its only sub-
View, and attaches the “ham” to the underlying event-driven environment.
No modification of either P or E is required.

5.5 How to Switch: Case PHE

There are two types of E, self-contained event-driven applications with their
own event-fetching loops (with RootModes) and those that are without an
event-fetching loop. For both types, the “ham” must provide the event-
fetching loop. It may not be obvious why an event-fetching loop is needed
for the self-contained applications that already have one. The reason comes
from an important distinction between event-driven and polling applications.
A polling application returns control to its parent when the condition for
looping is not satisfied, but an event-driven application does not. The only
time an event-driven application breaks its event-fetching loop and returns
is when it terminates. A simple-minded “ham” that activates the event

generation, passes control to the event-fetching loop of the event-driven
application, and waits for it to return will not work because there is no
guarantee that the control will come back.

Certainly, one can modify the event-driven application so that it re-
turns control under certain condition (for example, “LeaveWindow” event
received), but this breaks the promise of no modification. Another alter-
native is to let the “ham” and the application run as two processes and
have the “ham” suspend and resume the application process. This is also
not satisfactory because it introduces both the complexity of inter-process
communication and the performance loss due to the looping nature of the
“ham” process.

A technique called “loop merging” is employed. The event-fetching loop
in the application is merged with the polling loop in the “ham,” as shown
in Figure 2. This is done by copying the code in the event-fetching loop
and inserting it into the “ham” polling loop. The merged loop, then, serves
as the event-fetching loop. The real event-fetching loop of the application
is never executed. The merged loop in the “ham” checks the device state
changes interesting to the “ham” (for example, see if cursor is still in),
fetches an event from the event queue, and asks the application to process
the event (by sending the event to the “topMode” of E). The “ham” enables
the event generation before it enters the merged loop, and disables the event
generation after it leaves the loop.

The merged loop is suspended when there is no event in the queue. This
improves the performance of other processes since no CPU cycles are wasted
in the useless polling in the “ham.” The merged loop also transfers control
properly. When the user switches to another application (often by moving
the cursor onto that application), there are always events generated by the
user’s action to wake up the merged loop for it to return the control to its
parent (the P). The parent can ,then, assign control to the newly selected
application.

One can also insert code into the merged loop to ensure the event-driven
application conforms to the windowing behavior of the underlying polling
environment. For example, the Smalltalk interface (a P) uses the blue button
(the right mouse button) for windowing control (e.g., resize, move, collapse).
The inserted statements in the merged loop, as shown in Figure 2, can check
the status of the blue button and activate the “ScheduledBlueButtonMenu”
when the button is pressed. The user can, then, manipulate the window of

other loops Ham's loop

| while cond. is true |

other loops

{ while cond. is true | H
> merged loop
[process blue button| E

Figure 2: Loop merging

10

the event-driven application just as it were a Smalltalk StandardSystem View.

6 Conclusion

The event-driven MVC framework described above preserves both the struc-
ture and the semantics of the MVC paradigm. It not only allows efficient
user interfaces to be built, but also provides necessary compatibility with
the polling interfaces.

A prototype of the event-driven MVC framework has been built. Test
interfaces built with it show better background process performance and
cleaner program structure. Although no formal measurment has been done,
the test interfaces can conserve over 30% of the CPU time for the background
processes under the worst case (when the user is dragging a Mode clipped
against the Modes surrounding it). All of them are as responsive, if not more
so, than those built with the polling mechanism. Some of the test interfaces
(for instance, the general shared visual workspace) cannot be built with the
traditional polling mechanism of Smalltalk. The “Sandwiching” technique
has been successfully applied to create interfaces that mix the Smalltalk user
interface objects (text editor, debugger, menu, binary choice, etc.) with the
event-driven interface objects. The author is currently using this prototype
to develop a user interface management system for Smalltalk that supports
direct manipulation user interfaces.

7 Acknowledgement

A number of organizations and people have contributed to the work reported
here. The author is grateful to the National Science Foundation (Grant #
IRI-85-19517) and the Army Research Institute (Contract #MDA903-86-C-
0345) for their support of this research. John B. Smith, Rick Snodgrass,
Matt Barkley, and Gordon Ferguson provided valuable comments and sug-
gestions for this paper. The Textlab Research Group within the Depart-
ment of Computer Science at the University of North Carolina at Chapel
Hill has provided a provocative and supporting intellectual environment for
this work. Finally, special thanks to Jonathan Eunice who motivated this
research. Without his vision, this work would not have been done.

11

References

[Adams 38] Adams, S. S. MetaMethods: The MVC Paradigm. HOOPLA!
Vol. 1, No. 4, July 1988.

[Goldberg 83] Goldberg, A. & Robson, D. Smalitalk-80: the Language and
Its Implementation. Addison-Wesley, 1983.

(Krasner 88) Krasner, G. E. & Pops, S. T. A Cookbook for Us-
ing the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Programming, Vol.
1, No. 3, August/September 1988. pp. 26-49.

[Newman 79] Newman W. M., & Sproull, R. F. Principles of Interactive
Computer Graphics. McGraw-Hill, Inc., 1979.

[Schiffman 88] Allan M. Schiffman Time-Sharing Citizenry for Smalltalk-80
under UNIX. ParcPlace Newsletter, Vol. 1, No. 2, ParcPlace
Systems, 1988. pp. 9-10.

12

L

